Probabilistic Temporal Network for Numeric and Symbolic Time Information

نویسنده

  • Malek Mouhoub
چکیده

We propose a probabilistic extension of Allen’s Interval Algebra for managing uncertain temporal relations. Although previous work on various uncertain forms of quantitative and qualitative temporal networks have been proposed in the literature, little has been addressed to the most obvious type of uncertainty, namely the probabilistic one. More precisely, our model adapts the probabilistic Constraint Satisfaction Problem (CSP) framework in order to handle uncertain symbolic and numeric temporal constraints. In a probabilistic CSP, each constraint C is given a probability of its existence in the real world. There is thus more than one CSP to solve as opposed to the traditional CSP where no such uncertainties exist. In a probabilistic temporal CSP, since we use the Interval Algebra where a constraint is a disjunction of Allen primitives, the probability is assigned to each of these Allen primitives rather than to the temporal constraint. This means that a probabilistic temporal CSP involves many possible temporal CSPs, each with a probability of its existence. Solving a probabilistic temporal CSP consists of finding a scenario that has the highest probability to be the solution for the real world. This is an optimization problem that we solve using a branch and bound algorithm we propose and involving constraint propagation. Experimental study conducted on randomly generated temporal problems demonstrates the efficiency in time of our solving method. In the case of uncertain numeric constraints, our TemPro framework for handling numeric and symbolic temporal constraints is extended to handle uncertain domains. An algorithm for dividing domains into non-overlapping areas is proposed. This algorithm guarantees that the generated possible worlds do not intersect. Probable worlds are then constructed by combining these areas. A new branch and bound algorithm, we propose, is finally applied to find the most robust solution. DOI: 10.4018/978-1-61692-811-7.ch004

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Symbolic Knowledge into LocallyReceptive Field

This paper investigates Locally Receptive Field Networks, a broad class of neural networks including Probabilistic Neural Networks and Radial Basis Function Networks, which naturally exhibit symbolic properties. Moreover, speciic attention is given to the sub-class of Fac-torizable Radial Basis Function Networks whose architecture can be directly translated into a propositional theory and vicev...

متن کامل

Fuzzy completion time for alternative stochastic networks

In this paper a network comprising alternative branching nodes with probabilistic outcomes is considered. In other words, network nodes are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of network. Then, it is assumed that the duration of activities is positive trapezoidal fuzzy number (TFN). This paper com...

متن کامل

Symbolic Methodology in Numeric Data Mining: Relational Techniques for Financial Applications

Currently statistical and artificial neural network methods dominate in financial data mining. Alternative relational (symbolic) data mining methods have shown their effectiveness in robotics, drug design and other applications. Traditionally symbolic methods prevail in the areas with significant nonnumeric (symbolic) knowledge, such as relative location in robot navigation. At first glance, st...

متن کامل

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015